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Abstract
This paper gives a survey of recent work in collaboration with G Dunne
concerning a new method for computing determinants in quantum field-
theoretic applications, using angular momentum cut-off regularization and
renormalization. This method is generally applicable to the situation of
computing the quantum fluctuations about a classical configuration that has
a symmetry allowing the fluctuation operator to be radially separable. There
are many such cases of interest in quantum field theory. Here I describe the
case of the false vacuum decay rate in a self-interacting scalar field theory
modelling the process of nucleation in a four-dimensional spacetime. The rate
prefactor involves quantum fluctuations about the classical bounce solution,
which is O(4) symmetric. The computational method is based on the Gelfand–
Yaglom approach to determinants of ordinary differential operators, suitably
extended to higher dimensions using angular momentum cut-off regularization.
I also present a simple new formula for the zero-mode contribution to the
fluctuation prefactor, expressed entirely in terms of the asymptotic behaviour
of the classical bounce solution.

PACS numbers: 03.65.Sq, 03.70.+k, 11.10.−z, 12.38.−t

1. Introduction

The phenomenon of nucleation drives first-order phase transitions in many applications in
physics, most notably in particle physics, condensed matter physics, quantum field theory and
cosmology. The semiclassical analysis of the rate of such a nucleation process was pioneered
by Langer [1], who identified a semiclassical saddle-point solution that gives the dominant
exponential contribution to the rate, with a prefactor to the exponential given by the quantum
fluctuations about this classical solution. The nucleation rate is given by the quantum-
mechanical rate of decay of a metastable ‘false’ vacuum, φ−, into the ‘true’ vacuum, φ+.
Decay proceeds by the nucleation of expanding bubbles of true vacuum within the metastable
false vacuum [1–5]. Computing the semiclassical prefactor requires the computation of the
determinant of the differential operator associated with quantum fluctuations about the classical
solution. This is a technically difficult problem. This paper summarizes a new proposal [7] to
reduce the calculation of the decay rate to a straightforward numerical computation, without
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Figure 1. Plots of the potential, U(�) = 1
2 �2 − 1

2 �3 + α
8 �4, for α = 0.6, 0.7, 0.8 , 0.9, 0.99.

The vacua become degenerate in the ‘thin-wall’ limit, α → 1.

relying on any approximation or expansion. The starting point for our approach is an extremely
elegant and simple method, due to Gelfand and Yaglom [8], for computing the determinant of
a one-dimensional differential operator. This technique is ideal for numerical implementation.
However, its naive generalization to higher dimensions is divergent [9]. This is because in
higher dimensions renormalization is important, and so we must regulate and renormalize the
determinant. We present an analytic method of doing this using an angular momentum cut-off,
and apply it to the problem of false vacuum decay. (This method has previously been used to
compute the quark mass dependence of the fermion determinant for quarks in the presence of
an instanton background [10].) A related approach to false vacuum decay, also based on the
Gelfand–Yaglom formula, has been developed recently by Baacke and Lavrelashvili [11], and
we comment later on the similarities and differences between our approaches.

We consider the specific (rescaled) quartic potential [7, 11]:

U(�) = 1
2�2 − 1

2�3 + α
8 �4, (1)

where α characterizes the shape of the potential. Figure 1 shows some plots of the potential
for various values of α. The false vacuum decay rate per unit volume and unit time is [1–5]

γ =
(

Scl[�cl]

2π

)2 ∣∣∣∣det′(−� + U ′′(�cl))

det(−� + U ′′(�−))

∣∣∣∣
−1/2

e−Scl[�cl]−δct S[�cl], (2)

where the prime on the determinant means that the zero modes (corresponding to translational
invariance) are removed. Here �cl is a classical solution known as the ‘bounce’ solution [4],
defined below, and the prefactor terms in (2) correspond to quantum fluctuations about this
bounce solution. The second term in the exponent, δctS[�cl], denotes the counterterms needed
for renormalizing the classical action Scl.

2. Computing the classical bounce solution

The first step in computing the false vacuum decay rate γ is to find the classical bounce
solution, �cl(r), which is a O(4)-symmetric stationary point of the classical Euclidean action,
with �cl(r) interpolating between the false and true vacuum as r goes from 0 to ∞ [4]. The
bounce �cl(r) solves the nonlinear ordinary differential equation

−�′′
cl − 3

r
�′

cl + �cl − 3

2
�2

cl +
α

2
�3

cl = 0 (3)
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Figure 2. Plots of the fluctuation potential U ′′(�cl(r)) for α = 0.5, 0.9, 0.95, 0.96, 0.97, 0.98,

0.99, with the binding well of the potential appearing farther to the right for increasing α. Observe
that as α → 1, the potential U ′′(�cl(r)) is localized at r ∼ 1

1−α
.

with boundary conditions

�′
cl(0) = 0, �cl(r) → �− ≡ 0, as r → ∞. (4)

It is not known how to find �cl(r) analytically in any nontrivial field theory. One can directly
solve (3) by the method of shooting, adjusting the initial value �cl(0) until the boundary
conditions (4) are satisfied. Given the bounce solution, �cl(r), the corresponding radial
fluctuation potential is

U ′′(�cl(r)) = 1 − 3�cl(r) +
3α

2
�2

cl(r). (5)

Figure 2 shows some profiles of this fluctuation potential, for various values of α. Note that
U ′′(�cl(r)) is highly localized, with localization radius depending strongly on α.

3. Computing the determinant prefactor

Since the bounce solution �cl(r) is a function of r, the fluctuation operator [−� + U ′′(�cl)]
can be decomposed into partial waves, with (dimensionless) radial operators

M(l) = − d2

dr2
− 3

r

d

dr
+

l(l + 2)

r2
+ 1 + V (r), (6)

of degeneracy (l + 1)2, with l = 0, 1, 2, . . . . Here the radial potential V (r) is equal to the
fluctuation potential (5) with its large radius asymptotic value, 1, subtracted:

V (r) = −3�cl(r) +
3α

2
�2

cl(r). (7)

The free fluctuation operator [−� + U ′′(�−)], with V set to 0, can also be decomposed into
partial waves, with radial operators Mfree

(l) , also of degeneracy (l + 1)2.
For each l, the ratio of the determinants of M(l) and Mfree

(l) can be computed efficiently
and precisely using the Gelfand–Yaglom method [8, 9, 12]. This result states that for such
radial operators

det(M(l))

det
(
Mfree

(l)

) =
(

lim
R→∞

[
ψ(l)(R)

ψ free
(l) (R)

])(l+1)2

. (8)
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Here ψ(l) and ψ free
(l) are regular solutions of

M(l)ψ(l) = 0, Mfree
(l) ψ free

(l) = 0, (9)

with the same leading behaviour at r = 0: ψ(l) ∼ rl and ψ free
(l) ∼ rl . In fact, a numerical

improvement comes from realizing that both ψ(l)(r) and ψ free
(l) (r) grow exponentially fast

at large r, so it is numerically better to integrate directly the ratio [7, 11], T(l)(r) ≡
ψ(l)(r)

/
ψ free

(l) (r). Then result (8) is recast as

det(M(l))

det
(
Mfree

(l)

) = (T(l)(∞))(l+1)2
. (10)

We stress that result (10) provides a remarkably simple technique for computing the
determinant of a radial differential operator. It does not require any detailed knowledge of the
spectrum of the operator whose determinant is being computed, nor does it require evaluating
and numerically integrating the associated phase shift. Furthermore, the result (10) is ideally
suited to numerical evaluation, as initial value boundary conditions are straightforward to
implement numerically.

There are three different types of eigenvalues of the fluctuation operator, each having a
different role physically and mathematically.

• Negative eigenvalue mode: (l = 0)

The l = 0 sector has a negative eigenvalue mode of the fluctuation operator, and is
responsible for the instability leading to decay. This mode contributes a factor to the
decay rate γ related to the absolute value of the determinant of the l = 0 fluctuation
operator [1, 4]. From (10), this determinant is∣∣∣∣∣detM(l=0)

detMfree
(l=0)

∣∣∣∣∣
−1/2

= |T(0)(∞)|−1/2. (11)

• Zero Eigenvalue Modes: (l = 1)

In the l = 1 sector, there is a four-fold degenerate zero eigenvalue of the fluctuation
operator. Integrating over the corresponding collective coordinates produces the factors
of Scl

2π
in (2). In computing the rate γ , we need the determinant of the fluctuation operator

with the zero mode removed [1, 4]. We have found the following simple new formula [7]
for the zero-mode prefactor contribution:(

Scl[ϕcl]

2π

)2
(

det′M(l=1)

detMfree
(l=1)

)−1/2

=
[
π

2
�∞

(
�0 − 3

2
�2

0 +
α

2
�3

0

)]2

, (12)

where �0 = �cl(0) is the bounce solution evaluated at the origin, and �∞ is the coefficient
of K1(r)/r in the large-r behaviour of �cl(r). The advantage of the result (12) is that
it is expressed entirely in terms of the asymptotic behaviour of the classical bounce
solution �cl(r). This asymptotic information is already generated in the precise numerical
determination of the bounce solution, so no further computation is needed to extract the
zero-mode contribution to the prefactor.

• Positive eigenvalue modes: (l � 2)

For l � 2, the fluctuation operator has positive eigenvalues, each of degeneracy (l + 1)2.
For each l, the associated radial determinant is computed using (10)(

detM(l)

detMfree
(l)

)−1/2

= [T(l)(∞)]−(l+1)2/2. (13)
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Figure 3. Plots of T(l)(r) for l = 0, l = 1 and l = 2. These plots are for α = 0.5. Note that the
asymptotic value, T(l)(∞), is negative for l = 0, zero for l = 1 and positive for l = 2, illustrating
the three different types of modes.

Figure 3 shows the plots of T(l)(r) as a function of r, for l = 0, l = 1 and l = 2. These plots
are for α = 0.5. Observe that T(l)(r) approaches very rapidly its asymptotic value, T(l)(∞),
for r outside the range of the binding well of the fluctuation potential (compare with figure 2
for α = 0.5).

For each partial wave with l � 2, the radial determinant, [T(l)(∞)](l+1)2
, is finite and

simple to evaluate. In the discussion of renormalization, it proves convenient to consider the
logarithm of the determinant factors appearing in the rate (2):

−1

2
ln

(
detM(l)

detMfree
(l)

)
= −1

2
(l + 1)2 ln T(l)(∞). (14)

For large l, we can use the radial WKB analysis of [10, 13] to find the leading behaviour:

ln T(l)(∞) ∼ 1

(l + 1)

[
1

2

∫ ∞

0
dr rV (r)

]
+ O

(
1

(l + 1)3

)
. (15)

We have confirmed this numerically.

4. Regularization and renormalization

The large-l behaviour (15) means that the formal sum of contributions (14) to − ln γ ,

1

2

∞∑
l=2

(l + 1)2 ln[T(l)(∞)], (16)

is quadratically divergent. This divergence should not be too surprising, as we have neither
regulated nor renormalized the determinant prefactor in (2). In the language of quantum field
theory, we need to compute the renormalized one-loop effective action for this interacting
scalar field theory [3–5]. Here we apply the angular momentum cut-off regularization and
renormalization technique developed in [10].

4.1. Regularization

The first step is to introduce a regulator mass µ using the proper-time representation[
ln

(
detM(l)

detMfree
(l)

)]
reg

= −(l + 1)2
∫ ∞

0

ds

s
(µ2s)εtr

[
e−sM(l) − e−sMfree

(l)

]
, (17)
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where we have explicitly extracted the degeneracy factor (l + 1)2 from the trace. We then split
the sum over l of these regulated terms into a small l part, which is computed numerically
using (10),


1 = 1

2
ln |T(0)(∞)| − 2 ln

[
π

2
�∞

(
�0 − 3

2
�2

0 +
α

2
�3

0

)]
+

1

2

L∑
l=2

(l + 1)2 ln T(l)(∞) (18)

and a high l part computed analytically using radial WKB [10, 13]:


2 ≡ −1

2

∞∑
l=L+1

(l + 1)2
∫ ∞

0

ds

s
(µ2s)εtr

[
e−sM(l) − e−sMfree

(l)

]

= 1

2

{
− (L + 1)(L + 2)

4

∫ ∞

0
dr rV (r) +

ln L

8

∫ ∞

0
dr r3V (V + 2)

− 1

16

∫ ∞

0
dr

(
1

ε
+ 2 − γE + ln

µ2r2

4

)
r3V (V + 2)

}
+ 0

(
1

L

)
. (19)

Note that this WKB result (19) reveals large-L divergences going like L2, L and ln L, in
addition to a term which is finite in the large-L limit. The remarkable observation is that
the large-L divergences of 
2 cancel exactly the large-L divergence found numerically in

1, leaving a finite answer. Indeed, comparing (19) with (15) we immediately see that the
quadratic divergence cancels.

4.2. Renormalization

In the standard perturbative renormalization theory, the self-interacting scalar field theory has
one-loop MS counterterms

δctS = 1

32

∫ ∞

0
dr

(
1

ε
− γE

)
r3V (V + 2). (20)

We identify this counterterm (20) within the WKB result (19), with precisely the correct
coefficient and structure. Combining 
1 and 
2 with this renormalization counterterm δctS,
we get the renormalized one-loop effective action:

�MS = 1

2
ln|T(0)(∞)| − 2 ln

[
π

2
�∞

(
�0 − 3

2
�2

0 +
α

2
�3

0

)]

+
1

2

∞∑
l=2

(l + 1)2

{
ln(T(l)(∞)) −

1
2

∫ ∞
0 dr rV (r)

(l + 1)
+

1
8

∫ ∞
0 dr r3V (V + 2)

(l + 1)3

}

− 3

4

∫ ∞

0
dr rV (r) +

1

16

∫ ∞

0
dr r3V (V + 2)

(
1

2
− γE − ln

r

2

)
. (21)

Baacke and Lavreshavili [11] obtained another expression for the MS renormalized effective
action. We have verified [7] that these two expressions agree. Nevertheless, there is a pragmatic
difference in the computation, because (21) involves only local expressions in V (r), while
the expression in [11] involves computing nonlocal terms. Finally, we have compared [7] the
result (21) with the analytic thin-wall computation of Konoplich and Rubin [6], and found an
excellent agreement in the α → 1 limit.

5. Conclusions

The angular momentum cut-off regularization and renormalization technique gives a simple
and practical technique for evaluating the prefactor determinant in the expression for the



On the prefactor in false vacuum decay 6557

metastable decay rate in scalar field theories. This technique is extremely easy to implement
for any given partial wave, but the naive sum over partial waves is divergent. However,
this divergence can be regulated by computing the contribution of the low partial waves
numerically using the Gelfand–Yaglom formula, while the contribution of the high partial
waves is computed analytically using radial WKB. The merging of these two parts involves
renormalization and we have illustrated our technique using an MS scheme. The agreement
with previous results is impressive, but this approach is much more powerful. More generally,
our technique for extending the Gelfand–Yaglom formula to higher dimensions can also
be applied to other symmetric semiclassical configurations such as vortices and monopoles
(instantons were considered already in [10]). A physically important question is the extension
to finite temperature. In the extreme high-T limit, the system dimensionally reduces to a radial
3D system, so this method can be applied directly. At intermediate temperatures the sum over
Matsubara modes must be done, and this issue requires further study.
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